(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0) → s(0)
logarithm(x) → logIter(x, 0)
logIter(x, y) → if(le(s(0), x), le(s(s(0)), x), half(x), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
f → g
f → h
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
half(s(s(x))) →+ s(half(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(s(x))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0') → s(0')
logarithm(x) → logIter(x, 0')
logIter(x, y) → if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
f → g
f → h
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
half(0') → 0'
half(s(0')) → 0'
half(s(s(x))) → s(half(x))
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
inc(s(x)) → s(inc(x))
inc(0') → s(0')
logarithm(x) → logIter(x, 0')
logIter(x, y) → if(le(s(0'), x), le(s(s(0')), x), half(x), inc(y))
if(false, b, x, y) → logZeroError
if(true, false, x, s(y)) → y
if(true, true, x, y) → logIter(x, y)
f → g
f → h
Types:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
half,
le,
inc,
logIterThey will be analysed ascendingly in the following order:
half < logIter
le < logIter
inc < logIter
(8) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
half, le, inc, logIter
They will be analysed ascendingly in the following order:
half < logIter
le < logIter
inc < logIter
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s:logZeroError4_0(
*(
2,
n6_0))) →
gen_0':s:logZeroError4_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
half(gen_0':s:logZeroError4_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s:logZeroError4_0(*(2, +(n6_0, 1)))) →RΩ(1)
s(half(gen_0':s:logZeroError4_0(*(2, n6_0)))) →IH
s(gen_0':s:logZeroError4_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
le, inc, logIter
They will be analysed ascendingly in the following order:
le < logIter
inc < logIter
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s:logZeroError4_0(
n320_0),
gen_0':s:logZeroError4_0(
n320_0)) →
true, rt ∈ Ω(1 + n320
0)
Induction Base:
le(gen_0':s:logZeroError4_0(0), gen_0':s:logZeroError4_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s:logZeroError4_0(+(n320_0, 1)), gen_0':s:logZeroError4_0(+(n320_0, 1))) →RΩ(1)
le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) → true, rt ∈ Ω(1 + n3200)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
inc, logIter
They will be analysed ascendingly in the following order:
inc < logIter
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
inc(
gen_0':s:logZeroError4_0(
n627_0)) →
gen_0':s:logZeroError4_0(
+(
1,
n627_0)), rt ∈ Ω(1 + n627
0)
Induction Base:
inc(gen_0':s:logZeroError4_0(0)) →RΩ(1)
s(0')
Induction Step:
inc(gen_0':s:logZeroError4_0(+(n627_0, 1))) →RΩ(1)
s(inc(gen_0':s:logZeroError4_0(n627_0))) →IH
s(gen_0':s:logZeroError4_0(+(1, c628_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) → true, rt ∈ Ω(1 + n3200)
inc(gen_0':s:logZeroError4_0(n627_0)) → gen_0':s:logZeroError4_0(+(1, n627_0)), rt ∈ Ω(1 + n6270)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
The following defined symbols remain to be analysed:
logIter
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol logIter.
(19) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) → true, rt ∈ Ω(1 + n3200)
inc(gen_0':s:logZeroError4_0(n627_0)) → gen_0':s:logZeroError4_0(+(1, n627_0)), rt ∈ Ω(1 + n6270)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) → true, rt ∈ Ω(1 + n3200)
inc(gen_0':s:logZeroError4_0(n627_0)) → gen_0':s:logZeroError4_0(+(1, n627_0)), rt ∈ Ω(1 + n6270)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
le(gen_0':s:logZeroError4_0(n320_0), gen_0':s:logZeroError4_0(n320_0)) → true, rt ∈ Ω(1 + n3200)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
half(
0') →
0'half(
s(
0')) →
0'half(
s(
s(
x))) →
s(
half(
x))
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
inc(
s(
x)) →
s(
inc(
x))
inc(
0') →
s(
0')
logarithm(
x) →
logIter(
x,
0')
logIter(
x,
y) →
if(
le(
s(
0'),
x),
le(
s(
s(
0')),
x),
half(
x),
inc(
y))
if(
false,
b,
x,
y) →
logZeroErrorif(
true,
false,
x,
s(
y)) →
yif(
true,
true,
x,
y) →
logIter(
x,
y)
f →
gf →
hTypes:
half :: 0':s:logZeroError → 0':s:logZeroError
0' :: 0':s:logZeroError
s :: 0':s:logZeroError → 0':s:logZeroError
le :: 0':s:logZeroError → 0':s:logZeroError → true:false
true :: true:false
false :: true:false
inc :: 0':s:logZeroError → 0':s:logZeroError
logarithm :: 0':s:logZeroError → 0':s:logZeroError
logIter :: 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
if :: true:false → true:false → 0':s:logZeroError → 0':s:logZeroError → 0':s:logZeroError
logZeroError :: 0':s:logZeroError
f :: g:h
g :: g:h
h :: g:h
hole_0':s:logZeroError1_0 :: 0':s:logZeroError
hole_true:false2_0 :: true:false
hole_g:h3_0 :: g:h
gen_0':s:logZeroError4_0 :: Nat → 0':s:logZeroError
Lemmas:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s:logZeroError4_0(0) ⇔ 0'
gen_0':s:logZeroError4_0(+(x, 1)) ⇔ s(gen_0':s:logZeroError4_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
half(gen_0':s:logZeroError4_0(*(2, n6_0))) → gen_0':s:logZeroError4_0(n6_0), rt ∈ Ω(1 + n60)
(30) BOUNDS(n^1, INF)